ORC 65-1

w JANUARY 1965

Do

0 ? ﬁ

H 1

- LY T or — .:‘ ?

L PROGRAMMING IN NETWORKS HARD Copy $. 340

2 AND GRAPHS MICROFCHE §, ' -
¥ 5 by

Ellis Johnson

OPERATIONS RESEARCH CENTER

INSTITUTE OF ENGINEERING RESEARCH

st sy GOPY

UNIVERSITY OF CALIFORNIA-BERKELEY

PROGRAMMING IN NETWORKS AND GRAPHS

by

Ellis L, Johnson
Operations Research Center
University of California, Berkeley

January 1965 ORC 65-1 ()

This research has veen partially supported by the Office of Naval Research
under Contract Nonr-222(8%) and the National Science Foundation under Grant
GP-263% with the University of California, Reproduction in whole or in part
is permitted for any purpose of the United States Government,

CONTENTS

PROGRAMMING IN NETWORKS AND GRAPHS

10.

11.

LonieREANIC IO Foc o s ok o duamelemel isloxamal = ‘el SaEN & aMe) oo slloma o o) 5 ale NSt © ol & s L
Concepts from Graph Theory........ R e T R T AT T Y e Y -
The Linear Programming Problem.....ccoeeceeveccaccccocooesd
The Simplex Method for Network Flows,....eceeceeeseeesess.1ll

Phase I,....... Ceeeannee P, - S eveeell

Plows Wit Galll8es o s mes 96 5 s af b aionb SE b Eels s bt S En bl vEE o o
Linear Programming in an Undirected Graph,..ec.ceeeeeoeess 37
Integer Programming in an Undirected Graph,...............b46
The Degree-Constrained Subgraph Problem,eeeesoeoeee..59

ReferenceSl.c ooooo OQ.C....O!..I.ID.C0..-..00'.0........-00&

PROGRAMMING I NETWORKS AND GRAFPHS

1, Introduction

This peper treats a certain class of linear programs, the corresponding
graphical interpretation, and will bring together the graphical and
the algebraic approach, The first proovlem is ihe network flow problen,
The graphical approach and labeling procedure are due to Ford and
Fulkerson [7]. The earlier linecar programming approach wes given by
Dentzig (2],

In linear programming the concept of a basic solution to 8 linear
system of equations and inequalities is fundsmental since if there igo
an optimal solution to a2 limear program, ther there is an oprtimal
basic solution, A basis of a matrix A is & matrix B consistl& of
e maximal set of lineariy lndependent columns of A , and a casl-
solution to the linear system Ax s b, 0 x @, is 2 solution

x0 for which there is a basis B of A such that x° = 0 or

b
xg - 03 unless AJ is a columa of B -

The rank of a matrix A 1is defired to be the meodmum number of
lineerly independent columng of A, It is & well-koown result of
lirear algebrs tnat the rank is alsc egual to the meximum number of
linemly independent rows, and that for cvery set of linearly
independent columns of A with fewer columns then the rank of A ,
other columns of A can ve added to the setl wiile preserving tre
properiy of linear indepencence until the set Las as many cclumns as

the rank of A, Taus, & matrix B of incependent cclumns of A is

a basis of A if, and only if, B has as many columns as the rank of
A, or equivalently if, and only if, every column of A can be written
as & linear combination of the columns of B,

A square m xm matrix is defined to be singuvlar if its rank
is less than m and is non-singular if its rank is equal to m,
Another well-known result from linear algebra is that a system of
equations with a square, non-singular coefficient matrix has a unique

solution,

2, Concepts from Graph theory

Definitions:

Graph, Vertices, Edges: A graph G 1s a finite set V of vertices

v)sees,V @nd @ finite set E of pairs of vertices, e = (vi,vj) ;

called edges, The edge e = (Vi’vj) is said to be incident to the

k

vertices v and v, .
i d

Network, Undirected Graph, Arcs: The edges can be ordered pairs or

unordered puirs, and the edge is correspondingly called directed

or undirected. A directed graph, or network, is a graph with all of

the edges directed. In a network the edges are called arcs, although

the term edge still includes both the directed and undirected case,
Examples of directed graphs are transportation networks and communication
networks, In a transportution network the vertices are junctions, and
the arcs are connections, such as roads and air routes, between junctions.
An undirected connection, for example a two-way street, can be replaced

by two directed edges.

Subgraph, Spanning Subgraph: A subgraph H of G 1is a graph whose
A A '

vertex set V and edge set E are subsets of V and E , respectively,

A spanning subgraph H o G 15 a subgraph wiih the same vertex

set as G,

Path, Simple Path, Cycle: A path in a graph G 1s a sequence of

vertices and edges, (vl, €5 Vs CprenesV 15 € 1o vn), such that

is incident to both v and , The vertices v
€ 1 141 1Y

are celled the ends of the path P , and the path is from vy tc

Vg A simple path is a path with distinet vertices, A cycle is a

n

simple path together with an edge from the beginning to the end of “he

path,

Connected, Component: A connected graph 1s a graph with at least one

path between every pair of vertices, and a graph which is not connected

clearly consists of connected components,

Tree, End, Forest, Spanning Forest: A tree is a connected graph

with no cycles, and an end of a tree is a vertex tcuching only one
edge of the tree, A forest is a graph consisting of one or more
unconnected trees. A spanning tree of a graph G 1is a tree which is a

spanning subgraph of G , aad & spanning forest ¢f G is a forest

-

which is a spanning subgraph cf & .
Note that all of the definitions from path to spanning forest do not
depend on whether any edces are directed or undirected,

Lemma 1 If there is a path from v to vk , then there is a simple

path from vy to vk .

Proof: Let v v be a path from v. to v .

* & e
52 S0 gl o Y ool 1S 0] 8 1 K

Let v, Dbe the first vertex which is repeated, so that v_,..

1 O

distinct and do not appear again in the path, Then suppose v, 15 the last
J

listing of vertex v in the path, Omit the segment € Vi+l""’ej

from the path to form a new path vy el B V2 yesey Vi eJ+l ’

S

~f | -e jantuE s ode Ao BT O e pach Je r 2 sabed, svenstually &2 Ffeals

path wi.il result,

Lemma 2 The foll<wing is an i1nauctive ~haracterizaticn of trees: =a
tree 1: elther a wirg’ - ver=ex or 1: wwo disjcint trees fnired ty &
gingie edgz incident no cne vertex ¢f one tree and cne vertex <f ths

other tre=,

b A
by
Y

oroct., Clearly, 2 gragh oonatructed in such 5 way 43 & tree,
harder part ¢f the pr~:f 1e¢ to show that every tree satisfies the
conditicn, If a tree T has nc edge, then 1t ls e single vertex,

If T has an edge, say € = (vl, v2) , then there 15 no simple patk

between v snd v, nct using & because 1f there were, T wouwld

contair a cycle, Hence, by Lemma 1 there 18 nJ path from v, tc v,

not using e So 1f e i3 remived from T , the remaliilirg grazh

1’ i
has at least tws conre-ted componente I, and T, with v, in T

and Vs n T , Fram every vertex v 'n T tlere are simile raths

i

to vy and v ther:zIcre, there is a zlmple path <o Vi te V.,
not containirg <. . Fencs, removal cf & causes the remaluing grant
to have exactly tw. 27nnected ~Xuponer:s Tl :d T2 + They are

trees because if either had a ¢, 2le, 3¢ weuld T,
Lerms 3 Every tree lse at _22s3t cre end, and if 1% has ar edyse, then
it has at least tw: 2rds,

Proof': The prosf 1s mcst easily dcre ueing lemma 2, Lemm2 3 ig

truve fcr a singls vertex, Suppose it is true for tw> trees, Then aiding

an edge incident tc one vertex oI each tree will always leave nne 2nd
in each tree. Hence the new tr<e wil. have at leazt twe ends, and wle

lemma is prcver,

Lemma 4 A tree with m vertices has m-l edges,

Procf: The proof is immediate using lemma 2 and induction as in the
proof of lemma 3,

Lerma 5 [Dvery connected graph G contains a spanning tree T .
Proof: Define a subgraph T having the same vertex set as G and
edge set chosen as follows, Initially, choose any edge of G to be
in T . Thereafter, chcecse any edge of G thav does not produce

a cycle in T , When every edge in 3 -~ T produces a cycle 1f added

to T, then T 1s =asily seen tc be a spanning tree of G,

%, The Linear Programming Protler

For a network G , the vertex-arc incidence matrix is defined by

0 if arc ej is not incident to vertex vi
= 1 if arc e
8, < i (Vi, V) for some v e V
-1 if axc e, = (v, v,) for some v eV,
—) i
The linear programming rroblem is:
minimize 2z subject tc Ax + Us =L , C{xga,0s<0 ,

CA 4+ CS = 2

where A 1s an m x n vertex-arc inciderce matrix of a network G,
and U is an m x n matrix such that each column of U has one non=-

zero entry which is a 41 ora -1 ., Ifacolummof U has a +1

+

E
4

in row 1 , denote the variable bty s, , and 1f a column of U has a

, denote the variable by s; . Let 0 Dbe denoted

, end denote the corresponding cost ¢ by

-1 inrow 1

+ .
correspondingly 0i or Oi

CI or c; . The SI and s: sre called slack variables or slacks.

If a variable x = was permitted tc be negative, then 1t could be

replaced by two variables, 1ts positive and negative parts, and an arc
would be acdjoined to G 1in the reverse direction of e o If a variable

%, bad & lower bound 5> O end e, = (Vi’ VJ) , then bi could

be replaced by bi -8, b,j replaced by b,j + B8, OAK replaced by
@ - B , and the lower bound replaced by O , DNothing ies assumed

about b, Dbeing positive, negative, cr z2ero, lHence, 0 x<Q,

i

a >0, 1is completely general end includes lower bounds and
unresuvriced variablee, Symbolically , (:7k = + 00 eans .0 upper bound
is placed on X

Similarly, 0 8 0, 0> 0 1is perfectly general, A slack
must have an upper or lower bound in order to mean anything, A bound

+
can be adjusted to zero as above, and then & negative slack ¢ "

can be replaced by & non-negative s {9 and visa versa, Note that only
i 1’
bound on & slack is symbclicaelly represented by 0, = +0 ,

th
The k co.umn of A corresponds to erc e, of the network,

+
one of 8y » 8 could be presert at & glven vertex v No upper

arnd & column of U with non=-zero entry in row 1 corresponds to vertex

v, + The variable xK cern. be thought of as & flow in arc e

k)
can be thought of as exogenous flow out of vertex

i

the variable sI

cen be thought of es flow into vertex v, . The constraints,

i
ther, require that the net flow in vertiex vy he bi .

) and s

Let Ao denote the matrix [A, U] . For e matrix B of columns

of Ao , let. F_ be the subgraph of G consisting of the vertices

B
corresponding to columns of U and edges corresponding to columns
of A together with vertices incident to such edges,

0
Theorem 1 If B is & basis of A", then Fp 1s & spanning forest

of G.

Proof: If FB is not a spanning subgraph of G , then some vertex
of G , say vertex U is not in FB . Then every entry in row 1 of
B 1is a zero, But some column of AO has a non-zero entry in row 1,
and such a column cannot be written as & linear combination of columns
of B, contradicting B being a basis,

The remainder of the proof consist of showing that Fg has no
cycles, Suppose Fa hes a cycle Vis € 5 Voseens Vi s & s Vies = Vy e
Then there are k column' of B, say Bl,... ,}3k , correspording to

el,...’e [

1 if e, m (v, Vv
Let yJ - { J (J’ J+l)
-l if .
e.j - (VJ+1, VJ)
k
For v, not in the cycle, Z 5 ,y, = O because none of the arcs
1 Ju 1974
el""’ek ere incident to v, 80 all bi,j =0 for Jml,,.e,k .,

For vy in the cycle, there are four cases to consider:
(@) e = Oy vi) sy = Oy V)

(1) e = by vig)s ey = Oy Vi)

(v) ey = (v vy)y ey = g V)

1 J=i
For case (1), biJ - { and biJ =0 for Je¥i or 141,
-1 Jmi+l
k
end vy - X5 yi+l =]l 80 Jilbijy‘j n O, The other three cases are
k
similar, and in all of them Zy 5’ = 0 contradicting B

P

having linearly independent cclumns, Hence,the theorem is proven,

The above proof can be thought of as picking a direction around
the cycle and sending a flow of 1 around in that direction, A flow
of -1 cen be thought of as reversing the direction of the arc and
then sending a flow of +1,

A vertex corresponding to e column of U in B, a basis

A

of A, will be called & rooh ol the tree in Fg .

0
Theorem 2 For B a basis of A, every trze of the forest Fg
has a most one rcot,

Proof: Suppose some tree had two roots v and Vi ¢ A tree 1ie

connected so there is a simple pach from vy to Vi in the tree,

say Vv el s VoreeesVy 19 3 9 Vi Hence, there are k+l1 columns
1

of B, say B ,...,Bk+2 , corresponding to €15 Cpreens®s Vs Vs

respectively, Let

-1 if Bm'l has & =1 non-zero entry
e ® K+]
+). if B 7 heas & +l non-zero entry,
k (o
{ +1 HF B e has & +1 non-zero entry
y =
k+2 -1 A Bk+2 has & -1 non-zero entry,
. ir e, = (v, , v,)
. . +1
Yy -{ :) :)y J2l,ee k.
-1 i ey = (vyy, vy)
k42 j
Then, as in theorem 1, X y.B° =0 , contradicting linear independence
Jul *

of the columns of B, Hence, the theorem is true,
The construction above, as befcre, can be thought of as sending

e unit of flow into v, and out of vk .

A tree with one roci s called a rcoted tree, and a forest with
each tree hawyng ore roct 1c called a rocted forest,

A non-singular, triangular rmatrix is a square matrix with non-zeros
on the main diagonal and all zeros below the main diagonal, or whick can
be brought to such a form by sweapping rows and swapping columns. An
equivalent, inductive cieracterization is the following: & square
matrix B 1s mou-singular, triangular if there is e row of B with only
orie non=zero entry and if the mnacrix E fomied from B by delieting
that row and thne cciumn contalning the non-zero eatry 1s also non-singular,
triangular, The above characterizatior is complete if a 1 x 1 non-zero
metrix is understocd to he nonu-singular and triangular,

Theorem 3 If FB is a rovtled, spanalng forest of G, then B 1is
a non-singiar, trianguisr metrix,

Proof': Such a matrix B willl be sguare by lemma L, which says a
tree has one less cdge than vertex, Ihe additional column of U

for each tree makes B have as many columas as rows,

The proof is by induction on @ , the number of rows of AO . For
m=al, B isa 1 x1 aon-zecc matrix which is non-singular and
triangular., Assume *he theorer ig true for 1,.,.., or m-1 rows
in AO for some m > 2 , Consider a matrix AO kaving m rows,

If B hes only columns from U , then B 1is diagonal so
certalnly non-singuiiar anc trianguwier, If B has a column from A,
then FB has an edge, aad the tree to which the edge belongs has
at least two ends by lLemme 3, Dat the tree has only one root, and

hence, there must be a vertex vy wkich 1s an end of the tree and not

a root, Then, row L1 ¢£ 3 has 2.y one non-zero entry, Let B

be the matrix formed from B by dele=ting row 1 e&nd the column
e 70 o TR
with non-zero entry ir row 1 ., Let A = [A,U] denote the matrix
0
tormed from A by deletlng row 1 and all columns with non-zero
entries in rew 1 , and let G denote the network formed from G

by deleting vertex v, and all arcs incident to vertex v, . Then

i
A 1is the vertex-arc inclidence metrix of G, and Fg is a spanning
forest of G . Furthermore, cvery ctree of FE has exactly one

vertex corresponding to U ir B, Heznce, by the induction hypothesis,
B is non-singalar end tilayular, Therserore, B is non-singular
and triangular, completing the proof,

Theorem 4 Let AC be gsuch thet every comnected component of the

network G has at leas® one vertex ccrresyonding to a column of U,
Al ul O s
Then a matrix B of <oluans of A 1s a basis if, and only if, F]3

is a rooted, spanning lorest ¢f G .

Proof': By Lemme 5, each counecied component ¢ G countelns a

~

. . 0
spanning tree, Let B consist of tue columns of A corresponding
to all the edges in the sHenning treec of the connectad components
of G together wich cne coiumn fron U for each connected component

~

of G . Then by thecren 7, 3 1is nor-singuliar and triangular, Hence,
¢]
the rank of A 1is n ,
. 0

Supnose & matrixz B of zoilumrs of A has such a corresponding
grapn F , Then by theorem 2, P is non-singular and triangular,
Hence, the columns of 2 are liuearly !ndependent, end I 1is square

M al o] O

so has m rows and m columas, Tnerefcre, B 1s a basis of A ,

Suppose that E 1is a basis of AO - From theorems 1 and 2, the

proof will be completed 1+ i: can be shown thet every tree in the forest

1¢

11

FB has at least one root, OSuppuse a tree has no root, Then, B
has m-1 columns or less because a tree has one fewer edge than
vertices, and no tree in F can hav more than one root, But the rank
of AO is m so B could not bte a basis of AO . Hence, the theorem
is proven,
Leimma 6 If B 1is a m xm non-singular, triangular matrix of O ,
l's ,and -1's , and if b ica m x 1 column vector of integers,
then the solution to Bx = b has X 1nteger for Jj=1,...,m .,
Proof: The usual iterative method of solving a triangular system of
equations is to solve for one variable, substitute its value in its
place and move to the right hand side. Then the smaller matrix B
will be triangular with O, 1 , -1 entries, and at each step the
variable determined will be an integer, The proof is completed,

Lemma 6 can be used to show that if b, a , and , § are
integers, then every wvacic sclution will be integer, Hence, if there is
an optimal solution any btasic optimal solution will be all integers,
This property can ziso be preven from the algerithm in section 4 but has
been indicated here tc complete the discussion of the properties of

0
the matrix B when B ic a basis of A .,

L, The Simplex Method fcr Network Flows

In this secticn. the simplex meth2d for solution of the network
flow problem will be presented along with an example, The algebraic
details of the simplex algcrithm with upper tounds and the use of Phase I
and Phase II in solving linear programs are readily available (2] and

will not be reviewed here, However, a descriptive outline will be given

12

as a structure on which the later algorithms will be built. The
simplex algorithm begins with a feasible basis and nonbasic variables

at upper or lower bounds.

Simplex algorithm

Step 1: Determine values of the dual variables,
Step 2: Price out the variables and select a profitable variable for
entry into the basis. If there is no profitable variable, then the
present solution is optimal.
Step 3: Determine the changes in value of the besic variables when the
new variable is introduced into the basis with the largest change
consistent with feasibility. If there is no limit to the change in
the new variable, then the objective function is unbounded. Otherwise,
go to step &4,
Step 4: If the increase in the new variable is stopped by its reaching
its upper or lower bound, then it remains nonbasic at its upper or
lower bcund, and the algorithm returns to step 2. Otherwise, enter
the new variable into the basis and drop from the basis one of the
previously basic variables which prevented further change of the
entering variable, Def.ne a blocking variable to be a basic variable
which becomes infeasible if the entering variable is changed any more,
Thus, a blocking variable is dropped from the basis.

This description does not handle the problem of degeneracy, which will
be discussed later,

The procedure to be given works directly with the forest FB in

G to carry out these four steps. The corcepts introduced here will be

used through the remainder of this paper although the

JGE)
details of carrying out the four steps will differ for different
prohblems,

Let (Vl’ €5 VoyeaesVy 15 € 1) vr) be a simple path in a

Y

’

network, If an arc e, 3 (Vi, v1+l) g then ei is called a forward
arc in the path, and if e, = (vi+l’ Vi) , then e, 1s called a

reverse arc in the pell, Ir. a rcoted tree there is a unigue simple
peth from the rcot to each vortsx, £fn elge will elther bz a fcrwerd
arc or a revers:s arce in a’l such paths, and forvard arc will be called
an up arc with respzct to the trze, and e reverse arc will be called

a down arc with respect tc the tree, Thus, 1n a rooted forest each
arc can bte designated as an up arc »r a down arc,

Several operations in a rocted forest will be described for later
uce in the changing of basis in step 4, These operations will not
depend cn whether the edges ere directed or undirected, To reroot
& tree means %to Gesigrate anolher vertex as its root and drop the

old root. To cut off the toz of & rooted tree at an edge e , means

to delete the edge e from the tree, Then,part cf the tree becomes

a seperate tree whith has no root and is called the top of the tree,
Either one of its wvertices can be designated as the root, or it can be
grafted onto a rooted tree by adjoining an edge from it to a rooted
tree,

Network Linear Programaming Alcorlthm

Step 1: For a rooted, spanning forest Fy of G, the cdual variable

T 1s basic

L at a root vi is given by o if s

-C if s is basic .

[

If m, 1is determined, then for an up arc e = (vi, VJ))T is
given by 7, = -c, + M , and for a down arc e, = (VJ, Vi)) is
given by nJ =c + ﬂi . All of the ni are uniquely determined
iteratively because of a rooted tree being connected and having no
cycles,

Step 2: To price out and select a new variable for possible entry into

the basis, search for an arc eE or a vertex vy such that one of

the following holds:

(a) sI =0 and T cI F
() s; = 0; and ™ > -c; ;
(c) 53 =0 and WJ < -03 5
(d) s; = o; and wj < c; H

(e) e, = (Vi’ v, X, 0, and moem>C,

(£) e, = (v., v,) , X, = a,, and WJ -m o<

If none of (a)-(f) is found, then the solution is optimal, Otherwise,

go to step 3 with such a variable,

Step 3: The feasibility conditions here are 0 { xa , 0¢s 0.
In cases (a) and (b) of step 2, let v, be the root of the tree
containing v, , and let P = (Vlel’VQ""’vi-l’ei-J’ vi) be the

path in FB from vl to vi .

In cases (c) and (d), let v, be the root of the tree containing

, and let P= (v , e , v, i oe s ¥ e v be the path in
V,j (J, J, J+l} ’ E'l’ E"l, I‘) P
F from v, to v .
B J r
In cases (e’ and (f), suppose that v, end v, are in different
trees of FF . Then, let Vi be the root of the tree containing v,
2 i

and v ke the root of the tree containing vJ . Suppose that the
r

15

/. &
path from v, to v is \1a B Vopeee,Vy Ly €y Vi) and the
pa‘th from VJ to Vr is (VJ’ eJ) VJ+17"')V£-1) ez'l, Vr) . Let
e e 0o . a0 e []
Poa (Vs O Voreens Vy0s ®y0 Ve g ViS40 Vygreen Ve Sy)

For all of tne sbove caseg, increase xk by © |{f ek is a
forwa.'d arc inr P and aecrease xk by 0 1if ek is a reverse arc

in P, For the first vertex 2t in P, increase s; by © or

+ s]
decrease s, or y by © , whichevar is basic cr entering there. For

1 1
the last vertex L in P, decrease y; or s; by © or increase

+
ol

largest value couslstent with feasibility and go to step 4, If there

s, by @, whlchever lc basic or entering there, Set © at the

is no bound on how large © can be, then the problem has an unbounded
objective function,

In cases (e) and (f), suppose that v, and v, are in the same

tree of Fp. Let P = (Vj’ e MRELEA AR Y Vi) be the path in

FB from VJ to vi . Increese xk by e 1f ek is a forward arc

in P and decresse xk by © if ey is a reverse axc in P ., 1n

case (e), increase xz by © , I cese (f), decrease xj by © ,

As before, set © at the largest value consistent with feasibility

and go to step &,

Step L If the increase in © was stopped by the new variable reaching
its upper or lower bound, then it remains nonbasic,and the algorithm
returns to step 2. Otherwise, the new varigble enters the basis, and

a blocking variable ic dropped. We will corsider the corresponding

arcs or roots as entering FB and dropping from FB . There are five

cases to consider. The reference is to Example 1, which follows,

16

(a) A root enters, and & root drops. Then the tree is rerooted.
(Example 1, (1)).

(b) A root enters, and an arc drops. The arc dropping cuts off the
top of the tree, and the root enters on the top of the tree,
(Example 1,(k4))

() An arc enters from one tree to another, and & root drops., The
tree from which the root dropped is grafted onto the other tree
by adjoining the entering arc, (Example 1, (2),(3),(6),(8)).

(d) An arc enters from one tree to another, and an arc drops. The
arc dropping cuts off the top of one tree, The top is then
grafted onto the other tree by adjoining the entering arc.
(Exemple 1, (5)).

(e) An arc enters with both vertices in the same tree, Then,
necessarily, an arc drops, The tree 1is not changed except for
addition of one arc and deletion of another arc, (Example 1,(7)).

Exsmple 1 Suppose warehouses 1 and 2 have supplies of 10 and &
box cay loads of thread. Storage capacities are 7 box cars at each
wareiaouse, and storage costs are #2 per box car per week for warehouse
1 ard gL per hox car per week for warehouse 2, Suppose mills 3,4, and
5 will need 0,1, and 8 box car loads of thread in the coming week,

The 11i2ls nave no excess storage space and must meet these demands by
shioment from warehouses 1 and 2, The train lines, available space,

end. costs are shown below in algebir - ic form, The corresponding

(7]

+
graphical form illustrating the routes is shown, The slacks Sy an

5. ave indicated by arrows out of and into v respectively, All ol

"1

the lower bounds are O ,

i b

17

+ _+
X X f} x, x5 X x7 X3 8, 8,
1 1l 1 10
1 1 1 6
SHES! 1]-1] 1 0
-1 |=1]-=1 1 1 -1
-1 | -1 -8
71 51 6] 31 2} 3 3] 6| 2| 1|costs
51 3| 8| 8 9] 9] 5 61 7| 7] capacities or upper bounds

The simplex method starts with phase I,in which all of the cost
are 0 except for artificial variables, The entering variables will

be indicated by dotted lines, and the variables dropping from the

basis will be indicated by X . The symbol t* indicates a

variable at upper bourd, but the arc is not drawn so that the tree
structure of the tasis will be clear, The values of the basic
variables are indicated by numbers next to the arrows and dual
variables by numbers next to the vertices, Each iteration below
includes the 5 steps of the simplex algorithm except that the new
values of the basic varisbles are not shown until the next diagram.
Two iterations are done in (1) and (2), but should not cause con-

fusion because they are cn different components of FB .

18

+
ﬂl-l>0 80 sl can

enter basis but reaches

its upper bound first,

o £]; Similarly, s; can enter
N 6 @/l and the artificial at
v2 drops.
1 -1
7
Z> 5 0
®/ @% The new basic and dual
+
1 1 velues are shown, s, is
S 8 upper bounded at 7 .
(2) \Gj/

ﬂ2-ﬂh-+l>0 and
xhao,and 1r5-1r5=
2> 0 and x7=0 S0

|
y

0 -1 xh and x enter, Two
artificials drop.
Z X 5
A N 7Tl-1r5=+2>0 and xl=
-1 0 so x enters,and the
=)
el @)/8 artificial at v, drops.

19
m = =10 and 57 =
1 2
+ +
Ol a7 80 Bl enters

the basis,and X drops at

-1
5 its upper bound, Note
could have been chosen
o0 “
0 0 to drop as well,
6
L
7T)+"7T58+l>0 and
0 -11 Xg = 0 so x6 enters the
|
(5) | basis,and X, drops at
2 T -1 upper bound,
/
0 4
0
6
— 4 M -7 =+l >0 and
©, b7
0 0 / Xg = 0 so Xg enters the
6
(6) A b basis,and the artificial
? [dr t
-1 at v5 ops out,
5 END OF PHASE 1
= N e
; —®
0

20

The dual variables are

now calculated using costs

ck c ﬂé - ﬂ5 a+6> 5

and x2 =0 80 x2

enters,and x6 drops.

M. =10 :6(7 and
L 5

X = Bl 80 X enters,
+

drops.
5 ops

and s

Pricing out now reveals

that an optimum solution

has been reached.

For phase I, let us denote the dual verisables by Py instead
= -
of and let di = -(pi - pj) when e, = (vi, Vj) ; di = -p, , and
E; =p, . Theorem 4 says ‘he matrix B 1s & basis of A0 if,and only

F. 1s a rooted, spenring forest of G , provided that G has a

if,

B

vertex corresponding to a c¢olumn of U for each connected component
of G . Phase I starts with artificials, which are the same as slacke
singled out to be minimizeld, st &)l of the vertl :5 of G so G does
have a vertex with slack In each ccnaected compoaent, The simplex
method goes from basis tc basis, and the rank of every basis is the
same provided we go from ghase I to phase II by fixing the values of
and eliminating from Surther consideration those variables at zero with
d > 0 and those variebles &t unper bounds with 5’< 0, Theorems 1

and 2 assure that F_ will elways te a spanning forest of G with at

B
most one root on eac: tree for B a basis of AO . If some tree

did not have a root, then the basis would have lower rank than the
original basis contradicting the abcve statement which always holds
for the simplex method, Hence, the essumption that every connected
component of G has a vertex with a siack is Justified because it
always holds in the conputsationel procedure,

A labveling procedure can easily be devised to assist 11 carrying
ont the computation as deserloed, However, an efficient labeling
procedure for this algorithm must be eble to go up the tree as weil
as down the tree, Some promising work along these lines has been done
by Scions [1C] and others.

The algorithm given does not resolve the degeneracy problem,

22

That is, in step 4 if several variebles are blocking variables,

how do we decide which one to drop? In example 1, this guesticn arises
in iteration (4), In practice, the algorithm is almoct aiwaye rinite
without any special p:rrocedure for resolving degeneracy, The next
section treats degencracy ir a1 tecter way “nan can usuvally Yo dore,

5 Phase I

Phase I o the network flow problem is callied the max-{low mrouvlen,
Roughly,this name originates by considering the artificials as veing a defl-

icit flow, and the problem teing to maximize flow or mirimire . his defleit,

To begin, set tne variables x , s at zerc. Let yz = b,
if bi >0 and y; = -bi if bi 0., Tne costs d are O Ffor
all variables except artificials and dI = dE =1 for actificicis
yI and yg . The dual variables are denoted by Py The sr-ifloiels

are actually slacks which are aistinguiched by having d = 1 ,

Steps 1, 2, and 5 or the simpiex algcriclm offer some obLous
simplifications for this max-fiow urocblem. Step 4 can be modailicd
to resolve the degenerecy prooiem in a much beltter way thaa is
generally available for e linear program ani e.en betters trsn is
available for the netvork fiow protiem, One o7 the modivications 15

+ + - o
the use of slacks s, = 0 wnich have ¢; equal Lo zero, b were

2
3 5 . < + . mn &
not originally present in tae probdlewn so have oi eqal. o Loro, Tse
slackes are dummy slacks added to give & root to a tree, but Lhey ush

remaln zero because no slack is permitied there, Once tley tecons

nonbasic, they are diropped., To veglin, if bi =0 , let & slacu ce

basic at vy it there is a slack there. If not, adjoin e sleck

23

sI with o; 0 , The rooted, spanning forest FB consists now of

trees consisting of one vertex which 1s the root of the tree,

Max-Flow Algorithm

Step 1: All of the p, are +1, 0, or -1 depending on whether
+

J Jd !
y3 . Hence, determining the dual variables Py is simply a matter of

the tree containing vy has a root v, with y

a slack, or
detarmiring the roct of the tree contsining tha vertex vy and is no
longer an arithmetic operation,

. - = 3 f -
Step 2: Let V, = (v, |e =+), V, = (v, |p =0}, and v
{vi !pi = -1}. Then, pricing out and selecting & new variable is
reduced to sear:hing for one of the following:

and s i .

4

(b) vy € V3 , and s; n 03 nr s3 -0 ;

(c) ¢, ™ (vi, Vj) X, = 0,ard v eV, vy € V5 , Or

V \)
vi €V, VeV,

v, €V, v' € V3 A

, or

i 2”7
) e = (VJ’ Vi) » Xm0y, and v eV, v, € V) , Or
A
vi €Y v.j eV, ,or
v, €V €V, .

1€ % V53¢

Hence, pricing out as well as determining the dual variables, is not
an arithmetic process, but is only a search., Note that cases (a) and
(b) of step 2 in the network linear programming algorithm have now
been collapsed into case (a) and cases {c) and (d) there into case (b),
If none of (a)-(d) is found, then tie solution is optimal, Otherwise,

go to step 3 with such a variable,

2b.

Step 3: Step 3 1s the same as for the network linear progremrdng
algorithm except that an entering arc will never have both vertices
in the same tree because an entering arc always nas vertices in

different Vi . Hence, the [low will change by amount © a.ong &

+
path P from to yJ R

slack to y; . Since yi 2 0 1is now zart of the feasibiliit; corditiocn,

+ .
or {ror. y. tc a slack, oo from a
4

there is always a bound on how large © <can be set without slorating
feasibility. The path P 1is called & flow segmenting patinh vecause
the change in flow results in a decrease in the artificiels ac Lhe
end of P,
Step 4 (1): Step 4(1) is the same as step 4 of the netwcrk 1liaear
programming algorithm except that case {e) “here never oc-urs here,
and here we specify in certain cases which of the blocking ~ariadblies
to drop.

+ -

If an er-ificial ¥ or vy, reaches zero in sien), thea chenge

+ .
it to a slack 81 = 0 with a:

If P has two slacks at 1ts eads,.tuen any olocking varla.ie

= 0,

can be dropped. If P has cue siack and cae arvificlial, wuen <roo
the blocking variable nearest in P te the artificiel, & £ s
an artificial at each end and ouly cne varleble is e blocking variable,
then drop it, Otherwlse, there are a* least two viocxliy varisvies

corresponding to arcs in P, Jrop tie Dblockiiy arc aeares. cne &

of P ard the blocking airc nearest the other end of P ., O e

N + :
vertex vy of P Dbetween these two 8s1cs, puv a slack 8, = 0 ith
+ . e : .
o, = 0 . Now, there are three rcolea Lieces where there vere v rooh=dé

trees before,

25
Step 4(i1): If in step 4(i),a tree with an artificial yI at

the root v, had ancther tree or tocp of a tree grafted onto it, then

i
pegin at the edge adjoined in the graf+ing and trace the tree away
from the root along every branch until either an end of the tree is
reached, or an up=-arc e = (Vl’ VE) &t upper bound is reeched, or

a down-arc e = (v,, vl) et lower bound is reached, If either of the
[

two types of arcs e is found, ut off a top of the tres by deleting

e from FB and mseke v2 a rcot of the top with sleck at zero and

upper bound cf zero,

Repeat for artificials y; except look for up-arcs at lower
bound and down-arcs at upper bounds,

Return to step 1,

Proof of finiteness of the algorithm: The observation in step 3

that the flow augmenting path P 1s from vy with yI to vj
with y; 5 or from yz to a slack, or from a slack to y; is

important because it shows thet the flow change along P in step 3

is always away from yI end towsrd y; . But step 4{i1) assures

that at any iteration there can always be a positive flow change away

from the root of a tree with root yI and toward the root of a tree

with root y; . If ary iteratlon does rot result in a change in flow,
then the blccking verieble carnrnot be the entering arc or an arc in

the tree with an artificial so the tree with an artificial grows by

at least the entering arc, Hence,the nuzber of elements in V2 decreases
at each iteration which dn2s rnnt result in a chenge in flow, But,

there are only m vertices in all so there cen be at most m 1iterations

26

-
[

in a row resulting ia no change in Zow.

If a, 0, and b are integer, then eech change in flow results
in an integer decrease in the sum of the artificial variables, If the
original sum of the artificials is M , then the algorithm cannot take more
than m M 1iterations because the arti”icisls are non-negative,

Even with fractional and irrationel ¢, 0, and b , finite
convergence of the algorithm can be prcven, The variables in the

forest FB are determined once all tre other variables are determined,

But the other variables can take on only two values, their upper and
lower bounds, Hence, a glven fores: can only take on & finite number
of values and, hence, can only recur a finite number of times, There
are a finite number of rooted, spanning forests so the algorithm is
finite,

The reason the rord-Fulkerson labeling procedure for the max-flow
problem may not be finite (page 2i[]) when o , 0, and b are
irrational is that the variadbles stcriccly between their upner and lower
bounds may not form a forest; thac is, they may form cycles. This
difficulty cen be overcome withia the Tramework of thal procedure
by forming the set El of arcs between their upper end lower bounds,

After each breakthrough, the labeling procedure is done first in El

and then using arcs nct 1ia El Yut checking all of the arcs 1in El
each time a new vertiesx is labeled and unscanned. Then, the arcs
between their bounds never form a cycie, For a network with one
source, one sink, and no siacks, tre labeling procedure with this

modification is a way of accoriprisining the avove algorithm except that

the trees in V, ere nou Kep: track of, The lebeliig procedure

[N

/]

destroys ail the labels a’ter e change in {low, Whether a more efficiernt
labeling procedure can re devised to modify labels with change in
flow 1s yet tc be seen,

The Ford-Fulkeirssa procedure ronverts a genera. networks flow

problem tn a protlen with one zource, ore sink, ard nc slacks, This

ot

comveraior was nol done nere bdicause the purpose 1s to develop the
netwerk flow taecry within the frameworg of linear programming in
order to gnow the coarecilon, Adjoinizg the edditicrnal scurce, sink,
and slack vertex rakes sense granhlcally, but nou algebraically, and the
grapaical procedure without &4 joinl7ng acdltisral vertices 1s closer to
the lineer programming >rocecuire, Note also that pocitive lower bounds
are handled easily heceusce ac asfumption is made on b,

In summery, the oovent2ges of tre max-flcw algorithm cver the
network lirnear progracral.-g algoriiim ore sinpliclty in dztariining
dual variables and pricliug out, ani th: Tact thet at most r iterations
in sequeancz can occur witk 1o chenge 17 flow, Thi:z fs2t 15 a resilt
of heving nu arcs entoer witk moulr erds In the same tree because when
that happens tre flow clence 1z Soward Yhe rost in some arcs and away from
e ront in others, The flow ciharnge 1s elweys away from a root vy
with yI and toward & root v, wita y; . The trzes attached to
roots with sxilificlals zre constrouctad s5 that suzh a flow change is
possiblie,

6., Tie Primal-Duel Met:oé Tor letwork Fwe

The primal-dusl method was d2vised (6] for the neiwork flow
o

roblem, and ther it ves guneralized to the general linear program

28
[5]. Its advantage over the simplex method depends on some simplification
for the restricted phase I problem, For network flows, its advantages
over the networ linear programming algorithm are the same as the
advantages of the max-flow algorithm just given.

j i' e - (1r v) and x — O

(1) dual feasibility conditions: 7, - 7, < - -
i J > if e, (vi,vJ) and X

Pl

W ~
0
(e S TS
- -
- e
SR
n (2]

._Ei
AN
N/
0

-
L]
t

ol o e 4 4

Y4

]

(g
o1 =
- -

[y
)
[e]
[}
Q

mn
'
o

The primal -dual method starts witha 7w, x, and s satisfying the

dual feasibility conditions and O x<a , 0 ¢ s < 0, but not
+ -

Ax + Us =b, If ¢ >0, then 7Ti=0 all 1 and xk=si=sj=o
is sucha 7, x, and s, If ck, cI or c; is negative, set the

corresponding variable at upper bound, If there 1s no upper bound,

then set an upper bound M and let the variable be equal to M,

If at the conclusion the variable is still equal to M, then ralse

the upper bound M, introduce new artificials, and solve again,
Starting witha 7, x , end s satisfying (1) , and 0 x<a,

0 {8 0, the primal-dual method uses the max-flow algorithm

restricted to arcs e = (vi, VJ) and slacks s+ and SE such that

h
At the conclusion of the

k

+ -
- = = d | = .
mo=my=c , mo=c, end M s-c

v
1 TAC RN D

, where ¢ 1is chosen as large as possible without

max-flow subroutine, the m's are changed to m, + ¢, V

and 7, =€, V€ V}
violating the dual-feasibility conditions (1). Note that ¢ > O ,

The max-flow subroutine is the primal step, and the dual change
is the dual step. The two alternate until either no artificials
remain in the primal step or until there 1s no bound on how large ¢
can he chosen in the dual step. If there sre no remasining artificials,

then the solution m , x, s 1is optimal, If there is no bound on

€ , then there 1s no soiuticrn tc Ax +Us = b, 0{x{a, 0 s 0,

30

i Flows with Gains

A network with geins i1s defined to be a network G together with
a function w on E , the edges of G , to the reals, Then, w(e)

1s the gain associated with the edge e . Assume w(e) #0 .,

1 if arc e = (Vi’ v) for some v € V
Define &, = { w(ek) if arc e = (v, Vi) for some v ¢ V
0] otherwise

The linear program in a network with gains or flows with gains [8]
problem is:

Ax +Us = b , 0{x¢ga , 0gsgo ,
(2)

cx + ¢s = z(min) .

If w(ek) = -1 for all arcs e » the problem is the same as in
sections 1-6, If w(ek) > O and the graph is bipartite, Dantzig (2]
has called the problem the weighted distribution problem and given the
structure of the basis. IHere the basis is slightly more complex than in
sections 1 through 6, First, a preliminary lemma is needed,

Lemma 7 A connected graph G with k vertices and k edges has

one cycle, and if the edges of the cycle are removed, then the
remaining graph 1s a forest with each tree having exactly one vertex in
the graph,

Proof': The graph G must have at least one cycle since, otherwise,

G would be a tree, and a tree with k vertices has k-1 edges by lemma k,

Suppose G has two cycles, Then, vhere 1s an edge of G 1in

one cycle but not in the other., The removal of that edge from

G does not destroy connectedness and leaves one cycle in G .
Then, G has k vertices and k-1 edges so is a tree by lemma u;
but. & tree has no cycles so a contradiction is reached,

If all of the edges of the cycle are removed, tnen the remaindex
of the graph is a forest because it has no cycles, Each tree of the
forest must include a vertex of the cycle because the original graph
G was connected., Suppose there were two vertices of the cycle in
some tree of the remaining forest, Then, there is a path in the tree
between the two vertices and a path in the cycle between the two
vertices, Together, they form a cycle, Hence, the original graph
G would have had two cycles contradicting the previous part of the
lemma, Thus, the lemma is proven,

Let AO = [A, U],

Theorem 5 Le® AQ have rank m , The connected components of
the graph HB corresponding tc a basis B ot A° is either a rooted
tree, or a graph with the same number c¢f vertices and edges aund having

no slack,

Proof: A proof similar to the proof of theorem 2 shows that HB
can have at most one slack ccrresponding to a connected component,
The ;3ame idea as before of sending one unit cf flow from one
slack to the other along a simple path is still aplicable, but the
algebraic details are more complicated and are omitted here,

If a connected component of HB on k vertices has k+l1 or

more corresponding columns of B, then those k+l1 or more columns

32
have only k rows with non-zero entries, contradicting independence

of the columns »f B,

Therefore, if a connected component of Hy with k vertices
has one slack, then it cannot have more than k - 1 edges, It must
have k -1 edges to be connected, Hence, the component is a rooted
tree, If a connected component of Hy with k vertices has no slack,
then it cannot have more than k edges, But Ap and , hence, B
have ranrk m , so each connected component must have as many corresponding
columns of B as vertices, Hence, a connected component with k veitices
and no slack must have k edges, and the proof is completed,

In sections =6 the busisc was always trlangular, and the entries were
+1 and -1, Here, even when the basis is triangular, the entries are
not +1 and -1 but are 1 and w(ek) . The changes in steps 1 - 3
of the network programming algorithm given in section 4,

due to the gains w(ek) will be discussed first under the

assumption that the graph HB has no cycles; that is, HB is a rooted

forest.
Step 1: At the root, m, 1s still equal to ¢ or -c, . If

1
is known and e = (Vi’ VJ) is an up-arc, then Ty = ;T3;7 (ck - wi) .

If q; 1isknown and e = (VJ, Vi) 1s a down-arc, then m =

c, = wle)

k
Step 2: Pricing out is the same for the slacks, but for the arcs it

changes to:
(e) el = (vi) VJ) b xz = 0 H and Tri = w(ez) ﬂ'J > C£ ;

Step 3: This ste) is simi.=r to step 3 of the netwerk programming
algorithm excert for two 4ifferences,
Previcusly, the flow change was + or -0 in all of the arcs

of P, Now, suppose P = (vl, %0 Voreees® 10 Vo & Vpgs & 000

e

Vo1 oy vr) , and X, changes by o ., If e is a forward

.
arc in P, then x 1 changes by - #—)- IR 5 &L 1s a forward
- kel kK,

arc in P andby -0 *U e , %3 & reverce arc in P ; and ’Sul

Kol
shangss by """'(ek)g A% 2 i5 a forwsrd srz in P &and by
= <4
‘7({—”-) e if % is 2 r2verse ar: ia P, If e 1s a reverse

arc in P, then the charge in X1 is the same as the change in

xx +1 +1

above, The change in sicak at v, is either + 6 or ¢ w(el)e

e

above, and the change in A is the same as the change in X1
A X changes by © and simiiarly for V. .

The second ditfference cocurs when an entering arc has both vertices
in the same tree, Then a tlow change can taxe place rot only around
a cycle, but down the path from the cy:le to the root, If the variable
dropping is on the path inctead of tkhe Ccycle, then the cycle becomes
part of the basis,

A cycle corresponds to a matrix of the form:

where + indicates a non-zero entry,

+
+

For any right-hard sice, a system of equations withk such a coefficien’

matrix can be snlved by considering the first veriable to be a

3l
perameter, moving it to the right hand side, and solving the remaining

system, which is triangular,

If the cycles are thought of as being a single vertex, then the
connected component becomes a rooted tree with the cycle being the
root. In step 1, computing the dual variables, the m around
the cycle can be solved first, and in step 3, computing the chenge
in flow, the flow change around the cycle can be computed ilast as
a separate subroutine as indicated above, Step 4, the change in basis,
is similar to the network programming algorithm except that whenever
a slack enters or drops there, a cycle could enter or drop here in the
sense that an arc enters forming a cycle or an arc drops destroying a
cycle, The cycles can form when an arc enters with both ends in the
same tree as mentioned in step 3 above,

Phase I for this problem does simplify somewhat., The tree without
artificials, including the trees with cyclies, all have dual variabples

py = 0 at every vertex v The only computation of dual variables

-
is on trees with an arcificial, but,there,actual computation must be
done. Pricing out does not simplify, but every entering arc will have
at least one end in a tree with an artificial variable at the root.
Hence, any change of flow invoiving a cycle will be along a paih
with the cycle at ore end and an artificial variable at the other end,
However, the handling of degeneracy in the max-flow algorithm in sec
fors 1-6 can not be done for this problem, For the mex-flow aigorithm,
the flow change was always away from an artificial yI and toward an

artificial y; . That this important property no longer holds is

illustrated by the exampie below,

35

le 1 The network 1s 1llustrated below, and the algebralc

statement cf the prcblem gives the edge weights,

+
X X XN Y
i 1 s
& 1 1 =0
Y 4
2 |-10 a0

No upper bounds are placed,

s; is added but restricted to remain O,

0 -10m =1>0 80 x_ becomes
(l} : 1{2 "I'B > s 3 c
kf//(:) i basic, and y; drops .
= b 1 J
2
il
1
1 1
ON AN B SR S OO
(2) 0

f.l

enters, and yI drops

1rl-2n = o =>0 s0 x3

enters, and x, drops

2

= Lo

(4) Optimal

av] | o

Ly} |

Iteration (3) illustrates a case when the change in flow in arc
(v2 , Vj) 1s toward the basic artificial y; :

The two advantages of the max-flow algorithm do not carry over to
the phase I problem here, except that the dual variables on a tree
without artificial variables are zero, and the cycles only enter into
a basis change at one end of a path, The primal-dual method can be

used here, but lacks any speclal advantage since the phase I problem

Bl
does not significantly simpiify. IHowever, there 1g a special case of

the flows with gains problem ir. which i:e Phase I problem simplifies as
muchi as it did In the previous chapter, The next section aiscusses
that problem,

8., Linear Programming in ar. ‘Indirezted Granh

Suppose in the flowe with gains problem, all cf the gelus

w(ek) = +1 ., Threr th* mat>ix A s a vertes-=jge incldence matrix

Y]

nf an undire«.ted grazun ¢ . The zolurrs f A Corresperd to edge

and have twc 41 entris: lunli~ating the twe ircident vertice:, The edges

are undirected and will bz written e, Ty Vj] to distinguish them
from directed edges or ar::, The order f v,, V. Las ro importance;
e

there is at mcst cne cdge betwearn A ani vJ , and {v., Vv,] represents

2

the same edge as (v., V., .

4 1
If any ‘:.i < 0 , then ther: mus*t be & s, because, otherwise, there
: 4
th
would be no feaslil: solutizn t. Ax + Us := b , Hence, the i— row
ol n
of Ax +Us =b 15 28 X -5, =hb, , snd o, 8, =-c.b +Z(cia)x, .
i LK £ - o JEs Lk Yol i j_k)]
sre . 2an br meulacsd by zers and o by <+ 2 a If
Therefor 4 €D, 3 K K by
n k
o = =, than | 3 9 x > 1 helZs four all feseslble x and, hence,
k=t ‘x %
h -\;
the i—- row of Ax + Us =t <an just bz dropped from the system, If

3\
- A 1 i 3 1 ims of = =
g < e , then addlng o, tc doth sides of k-}iL a.i)S{ Bi = b, gives

- -

E a X +/g -5)=b +0 . Now, O ©8 20 s if b +0 (O,

kel ik k i i i ' i
then there 42 no feaslble woiutden, I£ bi + 0; > ¢, repiace bi
. - + - « + -
+0 rerisce 3, by & = C, - s O, and set 0, =b, + 0, .
by bi 17 Is i N 5 . i 2 <, an ; { X

Therefore, orly the carve 1T > © nueed be consilered here, All of the

artificial variatiec wiil be yI €0 We drep the + and Jjust write yi .

8
Define the length oOf a cycle o be the number of edges in it,

Ilesma 8 If 3 is a basis of Ao,the:thecyclesin Hy ere of
odd length,

Proof: Let (vl, €1s VpresesVos Cos vl) be a cycle of even length,

. {1 12 e m v, v, any v _[1, 1f 1a),1e)41, or 1al

Then a
i - and J=fk,
I R 0, otherwise,
-3
let x =]l for § evenand x, ==l for J odd, Then Za, X, =0
J J - Jul 139
for all 1 because for 1> 2, Jf‘luind a ‘1,1-1"1-1 ta X ®X X =
= 3
-1 - °
O, and for i =1, ,ji]. ‘1333'5.15.*'1,&,‘&“ +1=0 Hence,

& basis could not include an even cycle because the columns corresponding
to an even cycle are line»~"v dependent,
If G has n» odd cycles, then every basis has no cycle so B.B
is a rooted forest., A graph G with nc odd cycles i3 called
bipartite and is easily proven to have the property that the vertices

can be divided intc two disjcint sets Vl » V., such that every edge

2
is incident to ore vertex of Vl ard one of Vg e The rows of Ao
corresponding tc vertices cf V, cen be multipiled by -1 converting

Ao into the network flow type metrix. This section is,

therefcre, mainly concerned with grephse G having odd cycles,
Each odd cycle in the basis will be considered to be a single vertex
80 that the resulting graph l"B corresponding to B 1is a rooted
forest,
For a rooted tree, define the distance from the root to a vertex
to be the mmber of edges in the path from the root to the vertex,

For example, the distance from the root to itself is zero, Define
the distance from the root to an edge to be the number of edges in
the path from the root to the vertex of the edge nearest the root.
For example, an edge incident to the root is distance zero from the

root. The edges and vertices are called even or odd according as the

distance from the roct is even or odd.

An algorithm similar to the max-flow algorithm will be given for
Phase I of this problem, To begin, set the variables x , s at
zero. Just as in the max-flow algorithm, let y, =b, if bi > 0,

and if b, =0 let a slack be basic at v 1f there i1s a slack there,

ik o8
+ +
If not,set 8y = O and oi =0,
For a tree with root vy and Yy basic, the even edges are

called increasing edges, and the odd edges are decreasing edges,

Increasing and decreasing edges are only defined in trees with an
artificial at the root.

Alternating Path Algorithm

Step 1: The dual variables pi are zero on trees without an artificial.

On a tree with root v, and artificial yi , p, =41 for vJ. an even
A

J

vertex and Py = -1 for vj an odd vertex,

Step 2: et V, = (v, Ipi = +1}, V, =(vi | p, = 0), and v5 = (v, lpi - -1),

Pricing out and selecting a new variable amounts to searching for one of the

following: (a) vy € V, and st =0 or s; a O ;
+ =
JGVB and 8y =0, or si-O 5

(c) ez-[vi,vJ], X, =0, and v, € V

+

(b) v

LR 1

vievl,vJeV2 E

X (d) e‘e==[vi,VJ],xzacxk,za.ndvieVB,VJGV5 or
V1€V5’VJ€V2

The Vi vJ are not in any order so which of Vi v‘j is in V? and
which 1s in Vl or V5 does not matter,
Step 3: The feasibility conditions are 0 x<a,0s<0, 0K y.

In case (a) of step 2, let v, be the root of the tree containing

vy o Since v, € Vl » vy has an artificial variable because all of

the trees with artificial variables have all af their verticzes in V, .

Let P= (vl, €1s VoreeosVy 10 & 15 Vi) be the path in F, from v

to v, .
i
In case (b) of step 2, the tree containing v, has a root v

j = e, Vv oo
with an artificial just as in case (a)., Let P (Vj’ 7 Vit Ve

e. 1 er) be the path in F_ from u, to v .

In cases (c) and (d), suppose v, end v, are in the same tree
of F.. Then v, and v, are bothin V, or bothin V_ so

B i 3 45 5
the root v has an artificial, Let the path in FB from vi to vj

be v.). Form the cycle (vi,

(vis €0 Vit Vi S Yy %17 V141

Vigr Sy eﬁ) and let P = (vl, €5 VoreeesVy1s €15 vr)
be the path FB from il to the cycle, where g 1s a vertex of the

cycle,

In cases (c) and (d) , suppose v, and v, are in different

trees of FB . Let vy be the root for the tree containing vy

and V. be the root of the tree containing vj . Suppose the path in

F_. from v, to v, is (vi, v,, and from

B d: i

v, to v is v e
J r (3’

v), Let P=
r

17 VoreeesVylyr G1a10

37 Vaer2tttr par? Sro1?
e e b LN N] []

(V)5 €15 Voreeosdy 15 €4 10 Vs € Voo S VigseensV s €y V)

One end of P could be a cycle, but at least one end of P must be

an artificial. In case (c), designate e to be an Iincreasing edge,

and in case (d) designate e, to be a decreasing edge. If only one
end of P has an artificial, then starting at e, and going toward the
end of P without artificial, designate the edges alternately as

increasing and decreasing edges.
Suppose an end of P 1is a cycle, Then that end edge in P 1is

incident to a vertex vy of that cycie. Denote the cycle (v \

2’...,

10 10

Vor41? e2k+l’ Vl) . Designate el as an increasing edge 1if the edge

in P incident to the cycle is decreasing, and e 1s a decreasing

edge if the edge in P 1is increasing. Going around the cycle, alternately
designate the edges as increasing or decreasiry;, The edge e2k+l is
designated the se = o: e because the cycle is of odd length.

Increase X by % 15 ek is an increasing edge in a cycle

°)
and decrease X by E- if e, 1s a decreasing edge in a cycle,

Increasc X by & il e 1is an increasing edge of P and decrease
1L
X by e 1if ek is & decreasing edge of P , Decrease artificials

+
at the end of P by © . If aslack s, 1is basic at the end of P,

i

+
then increase or decrease 84 by © eaccording as the edge in P

incident to the end of P 1is decreasing or increasing, If a slack

s; is basic at the end of P, then increase or decrease 8, by
® according as the edge in P incident to the end of P 1is increasing
or decreasing, Decrease yi by e 1if vi is anend of P, Set

© as large as possible, consistant with feasibility,

Step hfi}: The types of basis change have been discussed in section
le

If an artificial reaches zero in step 3, then replace it by a slack
with zero upper bound,

If P now has artificials at neither end, any blocking varilable

can be dropped, If P has exactly one artificial, then drop tne
blocking variable nearest in P to the artificial, If no edge of P
is blocking,and the other end of P has a vertex-cluster, then drop
any blocking edge of the vertex-cluster, If P has an artificial

at each end and only one blocking variable, then drop it, Otherwise,
there are at least two blocking arcs in P , Drop the blocking arc
nearest one end of P and drop the blocking arc nearest the cther ernd

of P, Ona vertex v, of P between these two arcs, put a slack

i
s+ = 0 and o+ = 0, Now there are three rooted irees where there

i 1
were only two rooted trees,

Step 4(11): If in step 4(1) a tree with artificial at the root had
another tree or a top of a tree grafted onto it, then begin at the edge
adjoined in the grafting and trace the tree away from the root
along every branch until an increasing edge at upper bound or a decreasing
edge at lower bound is reached, Cut off & top of the tree by deleting

the edge from F_ and put a root on the top with slack at zero and upper

B
bound of zero,
Return to step 1,
The algorithm is completed, llow its correcti-ess and finitene:zs will
be proven.
Lemma 9 The increasing and decreasing edges alternate along P .
Proof: The edges in a tree with artificial alternste between increasing
and decreasing along any path in the tree because the distance from
an edge to the root alternates between even and odd numbers, Hence, in

step 2, cases (a) and (b), the lemma 1s certainly true., In cases (c

and (d), if one end of P 1is not an artificial, then the edges of P

from ez to that end alternate because the edges were designated
increasing and decreasing alternately beginning at ez . In case (c),
e 1s increasing, and in case (d) , e, is decreasing, The proof

of the lemma will be completed if it is shown that in case (c) the edge
e in P next to e and toward a root with artificial is increasing,
A vertex of g toward a root with artificial 1is in Vl in case

(c) and is in v5 in case (d), Hence, in case (c) the vertex of e

furthest from the root is in Vi

But in a tree with artificial at the root, . 1 increasing edge is an

and in case (d) it is in ‘v5 R

even edge so its vertex furthest from the root is an odd vertex and,

hence in V and a decreasing ecge is an odd edge so its -rertex

3)
furthest from the root is an even vertex and, hence, in vy e Therefore,

in case (c) the edge e 1is decreasing and in case (d) it is increasing.
n

Lemma L0 The changes of variables in ste does not c e Zea X

in a cycle or in P except at the ends of P where the changes are
compensated by changes in slacks or artificials,
Proof: Lemma 4 proves the lemma in P except at the ends of P,

For an end of P with a cycle, the change in the variable corresponding
to the end edge of P 1is compensated for by the change in the variables
corresponding to two edges of the cycle incident to the end edge.

n

The change in Z a, . x for other vertices v, of the cycle is zerc
jad 1y 4 i

by the alternating nature of the edges,
For an end of P with slack, the change in slack was defined so as

to compensate for the change in the variable corresponding to the end

edge.

Ly
For an end of P with y1 , the end edge is increasing so yi

decreases,

Lemma 11 In step 2, except for case (c) when vy € Vl , vJ €V, and
[

case (d) when v, € V3 , V. € V_, the resulting change in step 3

i J 2’

causes the sum of the artificials to strictly decrease,

Proof: Step 4(1i) assures that increasing edges are less than their
upper bounds and decreasing edges are greater than their lower bounds
in trees with artificials at the roots, Hence, cases (a) and (b) of

step 2 always r~3ult in a decrease in the artificilal at the root. Cases

(c¢) and (d) for which vy and v, are both in v, or both in V5 s

but in different trees of F always result in a decrease in botkL

B 2
artificials, The remaining consideration is cases (c) and (d) when

Vi and Vj are both in the same tree and both in Vi or both in

V5 . In the path P , variables corresponding to increasing edges

can increase and variables corresponding to decreasing edges can
decrease because they are in a tree with artificial, Let the cycle

be (vi, €15 VoreoasVy 15 Ciys vl) where the end of P 1is incident

to vy and ez is the entering edge. Then the edges other than ez

are increasing or decreasing the same as they were before in the tree

because el and e2k+l are both opposite of the end edge, and the

edges alternate from el and ek+l I

will be designated as increasing and in case (d) as decreasing just

until e, is met, In case (c),

)’
as ip the proof of lemms 4, Therefore, the variable corresponding to
every increasing edge can increase, and the variable corresponding to
every decreasing edge can decrease so the artificial strictly decreases,

Lemma 12 If o , 0, and b are integer, then all variables are

45

integer except possibly for edges in a cycle which are integer divided
by two, and the change © 1in step 3 is always integer,

Proof': Initially the lemma is true, Suppose it is true at the
beginning of an iteration, Then the permissable change in a variable
is an integer unless it is an edge of a cycle in which case the change
is an integer divided by two. But the variables all change by ©
except for the edges of the cycle which change by g-. The size of

6 1is determined either by © =k or %-= g-, so © 1s integer,

All of the variables change by © except around a cycle, so they remain
integer except aroun”® the cycle where they remain ianteger divided by
two.

Theorem 6 At most, m iterations of the algorithm can occur in
sequence without any change in the artificials, and the algorithm
terminates ;.. & Ji'nite number of steps, If a, 0, and b are integer

m
and z |h{ != M, then the algorithm terminates in at most M m steps.

iad -
Proof: By lemma 6, the only iterations that could result in no
decrease in artificials are iterations for which in step 2, cases (c)
or (d) occur with one vertex in V2. Since © =0 , the blocking variable
could not be in the tree with artificial and is not the entering
variable, Hence, the tree with artificial will grow by at least the
entering edge. Therefore, V2 decreases in size by at least one vertex
in every iteration for which © =0 , There are only m vertices
so no more than m iterations in sequence could occur with no change
in artificials.

Finiteness follows in the same way as for the max-flow algorithm

and indeed for linear progrems in general cnce the objective has

been shown to decrease every finite number of iterations. The bound
mM when a, 0, and b are integer follows Jjust as before.

This algorithm enjoys the same advantages as the max-flow algorithm
and for similar reasons, Here cycles can form, but the essential

fact is that for edge e 1in a tree with artificial,every change in

k

variables in step 3 causes X to increase if e

K is an even edge and

to decrease if e is an odd edge.

The primal -dual method explained for network flows in Chapter I,
section 6, applies here in exactly the same way, except that the matrix
A 1is different, and ﬂi - ﬂj is replaced by ﬂi - wJ for this problem,
9. Integer Programming in an Undirected Graph

The integer programming problem considered in this section is:

(¥) Ax +Us + Iy=sb ,0&x<{a,0¢s<0,0<y, xand s
n
Zy = w(min) integer,
i=)

where A and U are the same as in the previous section, and b > O ,
a>0,and o> 0 all have integer components,

By lemma 7, the alternating path algorithm gives integer answers
to (2) except around odd cycles in the basis. The odd cycles will
now be handled so as to avoid non-integer solutions,

The idea of the algorithm is the familiar cutting plane method
used by Dantzig, Fulkerson, and Selmar Johnson on the traveling salesman
problem [:] and systematically developed by Gamory | .=}, This algorithm
is similar to one that Edmonds [xf has used to solve a special case of
(2) , the degree constrained subgraph problem, which is discussed in
the next section,

Inequalities of the form

| LT
() z x <P

can be thought of as being adjolned to the system, The inequalities (%)
are such that every integer solution to (B) satisfies them, but non-
integer answers which might arise in the alternating path algorithm
do not satisfy them, The following lemma tells exactly the t;pe of

inequalities which will be used,

Lemma 13 Let VO be a subset of the vertices of G and E_ be a subset

0
of the edges of G such that every edge of EO is incident to at least
one vertex of VO . Suppose that for all vie VO neither sI nor

s; exists, Let K = (k |ek € EO]’ L = {(k |ek € EO and only one vertex
of e is in VO] , M= {k |ek € EO and both vertices of e &re in

v.}, and J={i|vi€VO]. Suppose zbi+2 ak=26+l where
0 1 1 kel

B 1is a positive integer. Then, every integer solution to the system (%)

satisfies the inequality Z)ﬁ{ <B.
¥

Proof: Let x, s, be a.. ..ceger solution to Ax + Us + Iy = b |
0x<a, 08¢0 ,0Ky. Suming the rows 1 of Ax + Us +

Iy=b for 1e J gives

(5) 2) % Z) 5,

keM ied
because there are no slacks in row 1 for 1 ¢ J, and the only variables
omitted are y, and X k ¢ K, and for them 8, % 2 0 and iy > 0,

Adding I x to both sides of (8) gives
kel

6) e(ZxK Zﬁ)g}“«zxk .

kel ied

From xk g.ak and K = UM follows

(7) QZxngbi+Zak=2B+l, or

keK ied keL
(8) R
keK

But, the left-hand side of (8) is an integer so the right-hand side ,
B + %-, can be lowered to the next smaller integer, B , and the proof is
completed,

Since for a given graph G there are only a finite number of
inequalities (h) of the type given in lemma 8, the system with them
adjoined is still finite, That such inequalities are sufficient to
give integer answers to (§) is proven constructively by the algorithm,

Values of x , s , artificials y , and dual variables p will
be kept track of throughout the algorithm and proven optimal at the
conclusion, However, the algorithm differs from the previous ones in
that x, y, s may not form a basic solution, The inegualities (y)
are not kept track of during the algorithm, but at the conclusion such
inequalities are formed to prove optimality. Only the phase I
procedure will be done; that is, the problem of minimizing w = 2 g
The algorithm is similar to the alternating path elgorithm of the preceeding

section,
Vertex-clusters will be used in the algorithm, A vertex-cluster

is a set Ui of vertices and other vertex-clusters together with a set

Ei of edges, If the vertex-clusters in Ui are thought of as

single vertices, then the Ui - Ei form a graph with one cycle,

49
Such graphs were discussed in section i. The set Vo wvill be a set

of certain of the vertices of G included in some vertex-cluster, and
'0 will be a set of certain edges incident to at least one vertex of
Vo B
The vertex-clusters are nested; that is, some of them are included

in others. This order of inclusion is important in the variable
change step of the algorithm, There, the maximal vertex clusters
are first thought of as single vertices ir order to determine certain
variable changes, and then the variable changes are determined within
each vertex-cluster involved beginning with the largest and working
down until the vertex-clusters consist only of vertices of G,

If the maximal vertex-clusters are thought of as single vertices,
then they, together with vertices and edges, form trees rooted at
vertices or vertex-clusters with an artificial, Let F denote the
resulting forest, The forest F does not include any vertices,
vertex-clusters, or edges within the vertex-clusters,and the maximal
vertex-clustere are considered to be vertices of F . As before, the
even edges in F are designated as increasing edges and the odd
edges in F as decreasing edges. : '

To begin, set Y " bi. ir bi > 0, and the forest F consists
of vertices vith b, > 0 . There T no vertex-clusters Uk 5 .k . Vo
is empty, and lo is empty. ;

Alternating Path tim

Stepl: The dual varisbles p, are zero for vertices not in the forest
F of trees with artificials at the rcot. In the forest F, o, = +1 for

an ever vertex, and "1"1 for v, an cdd vertex. The vertices

Yy 1

50

v, in U for all vertex-clusters have p = +1 , and the edge set

b k i
EO has an associated dual variable pm+l = -2 ,
Let Vl=(ilpi=+l],V2=[i|pi=0],V3=[i|pi=-l].
Step 2{12: Search for an edge ei or vertex vi satisfying one of the
following:
(a) e, = [Vi, VJ]) X, & az 5 eVi , and vy€ V2 ;
(v) e, = [Vi’ VJ]) % >0 , g eV5 , and vJ € V? ;
(c) e, = [Vi’ VJ] » Xy =0y, v, eV, , and vy € Vy o
(a) v, eV, and sI or s; exists ;
(e) Vg & Ve Y ¢ v, , and BI < UI or s; >0 ;

+ = "

(£) vy € V5 , and 8y >0 or B, < o,
(8) Cz=[Vi)VJ] ,x£<a,ez¢Eo,vi€V,and VJeVl,'
=

(h) e VJ] > X >0, v, € V} , and v ¢ V§ ;

i J
(1)) - [Vi) Vj] ’ xﬂ - ag: Vi € VO , and VJ € V3 ;
(3) €y = [Vii VJ] y 0« xz <e,, Vi € VO , and VJ = V5 .

In cases (a) - (c) , go to step 2(i1), In cases (d) - (J) , go to

step 3.

Step 2(11): In case (a), if x, = 0 or if v, ¢ Vb , then change

v, from V_ to V3 , adjoin e, and v, to F , and return to

J 2 £ J

step 2(1). If Xy > 0 and v, € VO , then let Ul’ El be the largest

= . Let U \)
vertex-cluster containing vy Vj € Y1 Vj € Y5 » change VJ
from V, to Vl , put e, in E and put every edge e = [VJ, v]

for v e Ul(\ V, 1in the edge set E Return to step 2(1i).

0 L
In case (b), change v from V2 to Vl , adjoin e, and

vy to F , and return to step 2(i).

vl

In case (c), let U, E, De the largest vertex-cluster containing

. Change v from V. to V ut, i U e
vy g vy z p o PUE vy An B, e, dn B,
and e, in Eo . Return to step 2(1i).
Step 3: In case (d), let Ul’ El be the largest vertex-cluster
containing "i , let Vl be the root of the tree in F containing
U, , end let P = (vl, € VpreessVy 1o &1 Ul) be the path in F

to U, .,

from vy 1

In cases (e) and (f), let vy be the root of the tree containing

i and let P = (v

17 €10 VoreeeaVypr &y vi) be the path in F

t .
from vl o) Vi

In cases (g) - (j) , suppose v, and vy are in different

trees of F , Let v be the root of the tree containing Vi

let v be the root of the tree containing Vi let (vl, €15 Voreee

, vi\ be the path in F from v, to v, , and let

vr) be the path in F from v, to

V141 f1a1
(VJ: ej’ Vj+1"°"vr-l’ CEl?
v). The
b

vertices v, and v, have vy > 0 and Y, >0 . In case (g),

) is increasing, and in cases (h) - (J),) is decreasing.

In all of the above cases, a positive integer change © can
be made in the variables corresponding to F , just as in the alternating
path algorithm, Here it must also be shown that an integer change 0
can be made alternately within a vertex-cluster includec in the path P,
Lemma 1% provides that proof. Go to step L,

In cases (g) - (j) , suppose vy and v'j are in the same tree of

F . Let the path in F from vy to vJ be (Vi’ =0 Vi+l""’vj-l’ ej,

Vj) and form the cycle C = (vi, e e, v, e),

17 Va1t Vi S Ve Sy

Let the root of the tree containing vy and vJ be v and let P =

(vl, €5 VoresesViys €L 1) Vr) be the path in F from v = to

the cycle, If none of Viseess ¥, 1s a vertex-cluster, if all increasing
in P 1 - :
edges e ave xkg-ak 2, and if all decreasing edges €\

in P have xk 2 2 ; then a variable change with © = 2 can be made
Just as in the alternating path algorithm except that lemma 9 is

needed to show that a positive integer change can be made through

any vertex-clusters in the cycle, Repeat the variable change with © = 2
until such a change would violate the feasibility conditions 0 { x < a,
Yy 2 0 . If an increasing edge e has x = ak or a decreasing edge

k k

e has X = 0, then go to step k.

Otherwise, let Vq be the vertex in P nearest to vr such that

either vq is a vertex-cluster, eq_l is a decreasing edge with
X =1 , or ¢ 1is an increasing edge with x =Qa -1, A new
q-1 ’ q i qa q
vertex-cluster U _, Eh will be formed, Let v ,...,v_ and all of
h o] r
the vertices or vertex-clusters of the cycle C Dbe in Uh and let

eq,...,er 1 and all of the edges of the cycle C be in Eh . The

o} h
the vertices of Uh and edges of Eh from F ., If eq was an increasing

vertex vq is the base of U , Let U be in F and remove all of

edge with xq = aq-l’ then let V, include Vq+l""’vr and all of the
vertices of the cycle C . Otherwise, let V, include all of the vertices

of Uh. Let EO include all of the edges in Eh and all of the edges

with both vertices in U NV, . If an edge e = [Vi’ VJ] of F has
d O a .
vi€e Uy, vy ¢ Uy, an <x < o then adjoin e = tc.both E

and EO and adjoin the vertex vJ to both Uh and VO . Remove

e, and vJ from F , Enlarge EO to include all edges e = [vj, v]

for v some vertex in Ug F\VO . If an edge e, = [vi, VJ} has

U v U and x = Q then adjoin e to both E and
Vieh’th’ K -k J K h

EO , adjoin the vertex Vj to only Uh , and remove ek h Vj from
%

Return to step 1.

Step 4: For P = (vl, €5 VoseansVo 1y € 15 Vr) , 1f v, has an
artificial, then let vq be the vertex in P nearest to L such that
either Va is a vertex-cluster, eq-l is a blocking edge, eq_l
is an entering edge, or vq =V, . Then drop all of P fraom eq-l

to the entering variable from F , and drop from F all of the vertices
and edges whose path to the root includes vertices already dropped from
F ., Delete from VO all those vertices and change them from Vl or

v. to V2 . Drop all of the vertex-clusters and drop from EO any

2

edge incident to a vertex dropped.

Return to step 1.
Lemma 14 Let U be a vertex-cluster and v ¢ Ul » Qlen, thére 1s
an alternating path P from v to the base of U, , and the end
edge in P incident to v 1is a decreasing edge. If v e VO as
well, ther there is also an alternating path with an increasing end
edge at v . A positive integer change in variab’.es can be made along
the alternating paths.
Breef : The proof is by induction because it is assumed that the
lemma is true for every vertex-cluster used in forini..: the vertex-cluster

Uk . With that inductive hypothesis, we can assume all of the vertex-

clusters used to form Ul are single vertices.

Initially, the vertex-cluster U, 1s formed from a path
4

54

P u (vl, €5 Voreees Vo 15 € 1) vr) and a cycle C = (vr, e, vr+l"°°’vq’

r

eq’ vr) where the path P may ccnsist only of the vertex v, The
cycle C 1s an odd cycle and has the same alternating character as in
t he alternating path algorithm,

For any vertex v, € C, ir+1, Pl = (Vi: € vi+l"°"vq’

eg Vo Spap Vet Vo) e By = (v ey Ve

-

» €, V.,

a1’ &2 Vg Cpopr VpopreeesVpr € vl) are alternating paths from

and : e
vi to Yl ’ one of e &

decreasing., The paths Pi and Pé are simple paths so obviously

an integer change can be made,

is increasing while the other is

For any vertex v, € P, 1>2, Pi = (vi, ei-l’ VigreteaVor Vl)

i 1

2t At (vi’ €12 Ve Ve Spa1r Ve G Vr+l""’vq’ eq’ Ve Cre

VieapreesVpr 5 vl) are alternating paths from v, to v_ , and one

i 1’
of e ei 1 is increasing while the other is decreasing, The path Pl
is simple, but P2 is not simple, But, the increasing edges ek of

P, k>»2, have X, gok - 2, and the decreasing edges e of P have

X 2 2. Hence, an integer change can still be made along Pl and P2 .

For v,, the path Pi = (vl) has the effect of h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>